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The p x p Latin square contains only p observations for each treatment. To obtain more replications, the experi-
menter may use several squares, say n. It is immaterial whether the squares used are the same or different. The

appropriate model is
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where y;;,n is the observation on treatment j in row ¢ and column & of the h — th square, pj, is the effect of the
h —th square, and (7p);n is the interaction between treatments and squares. [See Cochran and Cox (1957),
John (1971)]

(a) Normal Equations

Assume that the appropriate side conditions on the parameters are
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The normal equations for this model are
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h-th Latin Square Effect
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i-th Row Effect in the k-th Latin Square
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j-th Treatment Effect
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k-th Column Effect in the h-th Latin Square
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j-th Treatment Interaction Effect in the k-th Latin Square
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(b) Reduction in Sum of Squares

Using the solution to the normal equations in (a), the reduction in the sum of squares for the full model is
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Therefore, the sum of squares due to py, after fitting u, a;, 7, bi, (Tp) ks is
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Using the same argument
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Using symmetry we can obtain the sum of squares due to column effect
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Using the same argument as previously
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Using the same argument
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Finally, the anova table has the following form
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where The sum of squares due to error can be computed as

SSE = SSTotal - SSTreatments - SSRow - SSColumn - SSLatin Square — SSInteraction

and its degrees of freedom are
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